Multi-latin squares

نویسندگان

  • Nicholas J. Cavenagh
  • Carlo Hämäläinen
  • James G. Lefevre
  • Douglas S. Stones
چکیده

A multi-latin square of order n and index k is an n×n array of multisets, each of cardinality k, such that each symbol from a fixed set of size n occurs k times in each row and k times in each column. A multi-latin square of index k is also referred to as a k-latin square. A 1-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. Hämäläinen supported by the Eduard Cech Center under the grant LC505. Lefevre supported by grants DP0664030 and LX0453416. Supported by ARC Grant DP0662946 In this note we show that any partially filled-in k-latin square of order m embeds in a k-latin square of order n, for each n ≥ 2m, thus generalizing Evans’ Theorem. Exploiting this result, we show that there exist nonseparable k-latin squares of order n for each n ≥ k + 2. We also show that for each n ≥ 1, there exists some finite value g(n) such that for all k ≥ g(n), every k-latin square of order n is separable. We discuss the connection between k-latin squares and related combinatorial objects such as orthogonal arrays, latin parallelepipeds, semi-latin squares and k-latin trades. We also enumerate and classify k-latin squares of small orders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On avoiding odd partial Latin squares and r-multi Latin squares

We show that for any positive integer k 4, if R is a (2k − 1)× (2k − 1) partial Latin square, then R is avoidable given that R contains an empty row, thus extending a theorem of Chetwynd and Rhodes. We also present the idea of avoidability in the setting of partial r-multi Latin squares, and give some partial fillings which are avoidable. In particular, we show that ifR contains at most nr/2 sy...

متن کامل

An Algorithm to Construct Symmetric Latin Squares of Order q n forq ≥ 2 andn ≥ 1

Latin squares of order n exist for each n ≥ 1. There are severalways of constructing Latin squares. Also for n≥ 2, if the number of reduced Latin squares isknown, then the number of general Latin squares canbecalculated. This paperproposed a generalmethod to constructsymmetric Latin squares of orderq by using blocks of order q which have the basic property of a recursivealgorithmwith the use of...

متن کامل

Cycle Switches in Latin Squares

Cycle switches are the simplest changes which can be used to alter latin squares, and as such have found many applications in the generation of latin squares. They also provide the simplest examples of latin interchanges or trades in latin square designs. In this paper we construct graphs in which the vertices are classes of latin squares. Edges arise from switching cycles to move from one clas...

متن کامل

More mutually orthogonal Latin squares

A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. In this paper we give some constructions of pairwise orthogonal diagonal Latin squares. As an application of such constructions we obtain some new infinite classes of pairwise orthogonal diagonal Latin squares which are useful in the study of pairwise orthogonal diagonal Latin squares.

متن کامل

An introduction to SDR’s and Latin squares

In this paper we study systems of distinct representatives (SDR’s) and Latin squares, considering SDR’s especially in their application to constructing Latin squares. We give proofs of several important elementary results for SDR’s and Latin squares, in particular Hall’s marriage theorem and lower bounds for the number of Latin squares of each order, and state several other results, such as nec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011